Time aggregation visualization for embedded system program trace analysis

Damien Dosimont 1 Guillaume Huard ² Jean-Marc Vincent ²

1 INRIA

² Joseph Fourier University (UJF) Grenoble

firstname.lastname@imag.fr

SONGS Meeting (June 2013)

Let's play a game!

Embedded system multimedia applications

Embedded system growing complexity

- Hardware: multicore, heterogeneity
- Software: software stack, API, middlewares, multithread

- Hardware and software components
- Sequential treatment on data
- Cyclic behavior, synchronization, QoS

- Video or sound perturbed!
- Why? overloaded buffer, IT conflict, drivers, HW, scheduling...

Embedded system multimedia applications

Embedded system growing complexity

- Hardware: multicore, heterogeneity
- **Software**: software stack, API, middlewares, multithread

Multimedia application characteristics

- Hardware and software components
- Sequential treatment on data
- Cyclic behavior, synchronization, QoS

- Video or sound perturbed!
- Why? overloaded buffer, IT conflict, drivers, HW, scheduling...

Embedded system multimedia applications

Embedded system growing complexity

- Hardware: multicore, heterogeneity
- **Software:** software stack, API, middlewares, multithread

Multimedia application characteristics

- Hardware and software components
- Sequential treatment on data
- Cyclic behavior, synchronization, QoS

QoS non respected!

- Video or sound perturbed!
- **Why?** overloaded buffer, IT conflict, drivers, HW, scheduling...

SoC-Trace project

Tracing-based analysis

- Get synchro events, process/function/IT states
- Low intrusivity but huge data volume
- How to relate trace information to application behavior?

- Trace storage, data-model, trace/tools/results management
- Analysis flow: statistics, processing, data-mining, visualization

- Partners: INRIA, UJF, STMicroelectronics, ProbaYes, Magillem
- Granted by FUI

SoC-Trace project

Tracing-based analysis

- Get synchro events, process/function/IT states
- Low intrusivity but huge data volume
- How to relate trace information to application behavior?

SoC-Trace analysis framework

- Trace storage, data-model, trace/tools/results management
- Analysis flow: statistics, processing, data-mining, visualization

- Partners: INRIA, UJF, STMicroelectronics, ProbaYes, Magillem
- Granted by FUI

SoC-Trace project

Tracing-based analysis

- Get synchro events, process/function/IT states
- Low intrusivity but huge data volume
- How to relate trace information to application behavior?

SoC-Trace analysis framework

- Trace storage, data-model, trace/tools/results management
- Analysis flow: statistics, processing, data-mining, visualization

Project context

- Partners: INRIA, UJF, STMicroelectronics, ProbaYes, Magillem
- Granted by FUI

FrameSoc: SoC-Trace infrastructure

Figure 1: FrameSoC architecture and its features

Table of Contents

Section

Visualization scalability issues

In traditional visualization techniques

- Fidelity: aliasing artifacts, proportions (zoom out)
- Understanding: loss of context (zoom in, scroll), information loss (aggregation)

Figure 2: KPTrace dezoom: example of time axis scalability issues

Figure 3: Example of space limitations: Pajé trace with 700 producers

Viva: HPC system trace analysis

Hierarchical treemap and network topology representation

- Time Aggregation: time-slicing and animation
- **Space Aggregation**: hierarchy and/or best-cut partition

Figure 4: Treemap, showing the same application with different hierarchical aggregation settings

Figure 5: Network topology, with progressive hierarchical aggregation (left to right)

Embedded system analysis needs?

Visual representation that enables to...

- ... show **behavior** evolution over **time**
- ... spot disruptions, phases
- ... relate time behavior to space dimension

Scalability issues solving

- Avoid artifacts due to aliasing
- Keep context
- Get control on information loss
- Keep reasonable performance

Embedded system analysis needs?

Visual representation that enables to...

- show behavior evolution over time
- ... spot disruptions, phases
- ... relate time behavior to space dimension

Scalability issues solving

- Avoid artifacts due to aliasing
- Keep context
- Get control on information loss
- Keep reasonable performance

Section

Time Aggregation Visualization: Presentation

Principle

- Trace is divided in time slices
- Variable parameter enables to aggregate consecutive slices
- **Aggregates** are related to phases, disruptions

- Trace time-slicing (Schnorr)

- C++ library (best partition algorithm)
- FrameSoC module/Java (GUI, database gueries, time-slicing)

Time Aggregation Visualization: Presentation

Principle

- Trace is divided in time slices
- Variable parameter enables to aggregate consecutive slices
- **Aggregates** are related to phases, disruptions

Theoretical aspects

- Trace time-slicing (Schnorr)
- **Best-Cut partition** algorithm (Lamarche-Perrin)

- C++ library (best partition algorithm)
- FrameSoC module/Java (GUI, database gueries, time-slicing)

Time Aggregation Visualization: Presentation

Principle

- Trace is divided in time slices
- Variable parameter enables to aggregate consecutive slices
- Aggregates are related to phases, disruptions

Theoretical aspects

- Trace time-slicing (Schnorr)
- **Best-Cut partition** algorithm (Lamarche-Perrin)

Implementation

- C++ library (best partition algorithm)
- FrameSoC module/Java (GUI, database queries, time-slicing)

Time-Slicing: example of a synthetic trace

Time-Slicing: activity time matrix generation

Best-Cut Partition algorithm: qualities

Qualities: Gain and loss

$$\blacksquare$$
 gain(A) = $v(A) \log_2 v(A) - \sum_{e \in A} v(e) \log_2 v(e)$

$$\blacksquare \mathsf{loss}(A) = \sum_{e \in A} v(e) \times \mathsf{log}_2\left(\frac{v(e)}{v(A)} \times |A|\right)$$

parametrized Information Criteria

012345					
01234	12345				
0123	1234	2345			
012	123	234	345		
01	12	23	34	45	
0	1	2	3	4	5

Best-Cut Partition algorithm: parts aggregation

Tracing video execution: summary

Context

- GStreamer application playing a video, traced with GST_DEBUG
- Perturbation by stress program
- Trace converted into Pajé trace format
- Pajé trace imported to FrameSoC Data-Model

Use	Behavior	Duration	Trace Size	E.P. Num-	Event
Case				ber	Number
0 (ref)	Normal	20s	159 MB	1500	944303
1	Perturbation	21s	167 MB	1500	990995
	(@ 10s)				
2	Perturbations	26s	192 MB	1500	1140449
	(@ 7s, 14s)				
3	Light Per-	21s	166 MB	1500	985003
	turbation				
	(@ 15s)				

Analysis with FrameSoC module

Section

Conclusion

Embedded Systems Trace Visualization Issues

- Space and time axis scalability problems
- Fidelity, reliability:-S
- Loss of information, coherence

- Able to represent application behavior over time
- Solves some time scalability issues

- Lack of space dimension representation/aggregation
- Lack of interaction (details-on-demand)

Conclusion

Embedded Systems Trace Visualization Issues

- Space and time axis scalability problems
- Fidelity, reliability :-S
- Loss of information, coherence

Time Aggregation Visualization

- Able to represent application behavior over time
- Solves some time scalability issues

- Lack of space dimension representation/aggregation
- Lack of interaction (details-on-demand)

Conclusion

Embedded Systems Trace Visualization Issues

- Space and time axis scalability problems
- Fidelity, reliability:-S
- Loss of information, coherence

Time Aggregation Visualization

- Able to represent application behavior over time
- Solves some time scalability issues

But...

- Lack of space dimension representation/aggregation
- Lack of interaction (details-on-demand)

Future Works

New features

- Discontinue parts similarity
- Hierarchical aggregation
- Aggregation metrics
- Visualization/parts representation improvement
- User interaction

Does this representation fit to parallel system analysis needs?

Future Works

New features

- Discontinue parts similarity
- Hierarchical aggregation
- Aggregation metrics
- Visualization/parts representation improvement
- User interaction

Outside embedded system domain

Does this representation fit to parallel system analysis needs?

Merci de votre attention!

http://moais.imag.fr/membres/damien.dosimont/