Guillaume Huard ² Jean-Marc Vincent 2 Damien Dosimont 1

1 INRIA

² Grenoble University

firstname.lastname@imag.fr

Riken Seminary (September 24th 2013)

Trace analysis problematics

A visualization shows a trace particular aspect

Global Analysis

Execution Comparison

Correlations

Workload

Run behavior

Structure

Call graphs

rom

Trace overview and scalability issues

Schneiderman's analysis methodology

 Overview first, zoom and filter, then details on demand

Figure 1: KPTrace dezoom: example of time axis scalability issues

Figure 2: Example of space limitations: Pajé trace with 700 producers

Structural representations

Lucas Schnorr's works: Triva (Viva)

- Hierarchical aggregation using sum operator
- Time aggregation : time slice duration chosen by user

Figure 3: Triva treemap view example, showing different aggregation steps

Temporal representations

Figure 4: LLTng Eclipse Viewer visual aggregation uses dots

Figure 5: Pajé aggregates small states together

Ex: Visual aggregation on Gantt Charts

- Lack of semantics
- Aggregation behavior difficult to predict

Our proposition: Ocelotl (SoC-Trace Project)

Our proposition: Ocelotl (SoC-Trace Project)

Enable the user to control the aggregation Microscopic Macroscopic Data Data 1) Quality 2) Parametrized Computation Aggregation Shannon entropy -> Complexity reduction (bits) Kullback-Leibler divergence = Information loss (bits) MIN MAX MIN MAX Power

Implementation

Interface Overview

Interface Overview

Results

Time Aggregation Visualization

- Able to represent application behavior over time
- Solves some time scalability/overview issues
- Performances?

But...

- Lack of **space dimension** representation
- Lack of **interaction** (details-on-demand)

Results

Time Aggregation Visualization

- Able to represent application behavior over time
- Solves some time scalability/overview issues
- Performances?

But...

- Lack of **space dimension** representation
- Lack of **interaction** (details-on-demand)

Future Works

New features

- Spatio-temporal aggregation
- Aggregation operators
- User interaction

What about HPC/Distributed Systems?

Future Works

New features

- Spatio-temporal aggregation
- Aggregation operators
- User interaction

Outside embedded system domain

■ What about HPC/Distributed Systems?

http://moais.imag.fr/membres/damien.dosimont/

Lamarche-Perrin Works: Multi-Agent Systems

How to Build a Meaningful Macroscopic Description?

Example: Geomedia Project

Example: Viva

Represent Hierarchical Structure according to Value Heterogeneity

Information Loss

Information Loss

Information Loss Measure

Kullback-Leibler Divergence

$$loss(A||e) = \sum_{e \in A} v(e) \times log_2\left(\frac{v(e)}{v(A)}\right)$$
 in bits/x

 Quantity of information than one loses by using an aggregated description instead of the microscopic description

Complexity Reduction

Complexity Reduction Measure

Shannon Entropy

$$H(v) = \sum (v(i) \times \log_2 v(i))$$
 in bits/x

Entropy Reduction

$$gain(A||e) = H(A) - H(e)$$
 in bits/x

 Quantity of information than one saves by encoding the aggregated description instead of the microscopic description

Compromise Finding between Information Loss and Complexity Reduction

Parametrized Information Criterion

$$pIC(A) = p \times gain(A) - (1 - p) \times loss(A)$$

 Visualization techniques using aggregation
 Our proposition: Ocelotl
 Conclusion
 Questions

 ○○
 ○○
 ○○
 ○○
 ○○
 ○○

Temporal Aggregation

Temporal Aggregation principle

Same principle but only consecutive data can be aggregated

Ex: Tunisia citation

Need of a microscopic level description

Microscopic Level: Time-Slicing

Microscopic Level: Producer Activity Time Matrix

Microscopic Level: State Activity Time Cubic Matrix

Quality Computation

Gain and loss formulas: originally for scalars

012345					
01234	12345				
0123	1234	2345			
012	123	234	345		
01	12	23	34	45	
0	1	2	3	4	5

Adaptation for time-sliced description

- Vector (ex: activity time per process) quality(A) = $\sum_{i \in n}$ quality(A[i])
- Matrix (ex: activity time per state type) $quality(A) = \sum_{i \in n} (\sum_{i \in m} quality(A[i][j]))$

Best-Cut Partition for a given p

