troduction	Fil rouge: application example	Our proposal: Ocelotl	Conclusion 0000	Questions 000000000000000000000000000000000000

OcelotI: Time Aggregation Visualization for Trace Overview

Damien Dosimont¹

Guillaume Huard² Jean-Marc Vincent²

¹ INRIA

² Grenoble University

firstname.lastname@imag.fr

LICIA 3rd Workshop (October 22nd 2013)

Context: SoC-Trace project

Embedded system trace analysis problematic

- Hardware and software complexity
- Trace size and format management
- Analysis technique scalability

Propositions

- FrameSoC infrastructure : storage, data-model, trace/tool/result management
- Analysis flow : statistics, data-mining, visualization...

Context: SoC-Trace project

Embedded system trace analysis problematic

- Hardware and software complexity
- Trace size and format management
- Analysis technique scalability

Propositions

- FrameSoC infrastructure : storage, data-model, trace/tool/result management
- Analysis flow : statistics, data-mining, visualization...

Context: SoC-Trace project

Embedded system trace analysis problematic

- Hardware and software complexity
- Trace size and format management
- Analysis technique scalability

Propositions

- FrameSoC infrastructure : storage, data-model, trace/tool/result management
- Analysis flow : statistics, data-mining, visualization...

	Fil rouge: application example ●○○			
Fil roug	ge: typical em	bedded sys	tem use	case

	Fil rouge: application example ○●○			
Fil roug	e: application	tracing resu	lit	

Only 20 second duration but...

- Almost 1500 different functions, 4 threads
- One million of events
- 100 Mo trace (Pajé format)

For a 10 minute-long video

- Same number of functions, but...
- More than 30 millions of events!
- 3 GB trace!

We can easily obtain well bigger traces!!

	Fil rouge: application example ○●○			
Fil roug	e: application	tracing resu	lit	

Only 20 second duration but...

- Almost 1500 different functions, 4 threads
- One million of events
- 100 Mo trace (Pajé format)

For a 10 minute-long video

- Same number of functions, but...
- More than 30 millions of events!
- 3 GB trace!

We can easily obtain well bigger traces!!

	Fil rouge: application example ○●○			
Fil roug	e: application	tracing resu	lit	

Only 20 second duration but...

- Almost 1500 different functions, 4 threads
- One million of events
- 100 Mo trace (Pajé format)

For a 10 minute-long video

- Same number of functions, but...
- More than 30 millions of events!
- 3 GB trace!

We can easily obtain well bigger traces!!

Figure 1: Synthetic example of Gantt Chart

Fil rouge: application example ○○●		
	waaa hahay	1:000

How to represent this trace behavior over time?

Gantt Chart is the most common technique employed by analysts...

Figure 1: KPTrace dezoom : example of time axis scalability issues

Figure 2: Example of space limitations : Pajé trace with 700 producers

... but it does not scale to voluminous traces

		Our proposal: Ocelotl ●OOOO	
Our pro	posal: Ocelotl		

Fit to Schneiderman's methodology...

Overview first, zoom and filter, then details on demand

... build upon an algorithm proposed by Lamarche-Perrin

Adapted to timestamped events using time slicing

Fit to Schneiderman's methodology...

Overview first, zoom and filter, then details on demand

... by providing a macroscopic description of the trace...

OSER-FORER

6/32

Innia

... build upon an algorithm proposed by Lamarche-Perrin

Adapted to timestamped events using time slicing

Extended to multiple event sources

Fit to Schneiderman's methodology...

Overview first, zoom and filter, then details on demand

... by providing a macroscopic description of the trace...

Inría

6/32

... build upon an algorithm proposed by Lamarche-Perrin

- Adapted to timestamped events using time slicing
- Extended to multiple event sources

User controlled level of details

INMESTE INSEPTFORER 7/32

Inna

	Our proposal: Ocelotl	

Analysis with Ocelotl (Settings)

		Our proposal: Ocelotl		
Analysia	with Ocolotl (Ovorviow C	Nualitia	

Analysis with Ocelotl (Overview, Qualities)

	Our proposal: Ocelotl		
A	7	- + - ! - \	

Analysis with Ocelotl (Zoom and details)

		Conclusion •••••	
Results			

Information based time aggregation

- ... describes behavior by highlighting phases and perturbations
- Interaction helps to focus on these points
- Performance:
 - 20s to visualize 1M event trace
 - 2h to visualize 30M event trace (bounded by database query time)

But...

Lack of **space dimension** representation

		Conclusion •••••	
Results			

Information based time aggregation

- ... describes behavior by highlighting phases and perturbations
- Interaction helps to focus on these points
- Performance:
 - 20s to visualize 1M event trace
 - 2h to visualize 30M event trace (bounded by database query time)

But...

Lack of **space dimension** representation

		Conclusion ○●○○	
Current	Focus		

New features

Spatio-temporal aggregation

Use-cases

HPC/Distributed system relevant use-cases

Introduction O	Fil rouge: application example	Our proposal: Ocelotl	Conclusion 0000	Questions	
Current Ecous					

Current Focus

New features

Spatio-temporal aggregation

Use-cases

HPC/Distributed system relevant use-cases

		Conclusion	
Links			

My website

http://moais.imag.fr/membres/damien.dosimont/

Tools and libraries are available on my github

http://github.com/dosimont

	Conclusion ○○○●	
		· · · · · · · · · · · · · · · · · · ·

Merci pour votre attention!

				Questions	

		Questions

Interface Overview

		Questions
~ :		

Interface Overview

Inda Partin 12 IICIA

18/32

		Questions 000000000000000000000000000000000000

Example: Geomedia Project

19/32

			Questions OOOOOOOOOOOOOO
Example	: Viva		

Represent Hierarchical Structure according to Value Heterogeneity

			Questions ○○○○●○○○○○○○○○○
Information	tion		

Information Loss

		Questions

Information Loss Measure

Kullback-Leibler Divergence

$$loss(A||e) = \sum_{e \in A} v(e) \times log_2\left(\frac{v(e)}{v(A)}\right)$$
 in bits/x

Quantity of information than one loses by using an aggregated description instead of the microscopic description

Complexity Reduction

			Questions
Complex	kity Reduction M	leasure	

Shannon Entropy

$$H(v) = \sum (v(i) \times \log_2 v(i))$$
 in bits/x

Entropy Reduction

gain(A||e) = H(A) - H(e) in bits/x

Quantity of information than one saves by encoding the aggregated description instead of the microscopic description

Parametrized Information Criterion

$$pIC(A) = p \times gain(A) - (1 - p) \times loss(A)$$

			Questions
Tempora	I Aggregation		

Temporal Aggregation principle

Same principle but only consecutive data can be aggregated

Ex: Tunisia citation

p is growing

inna

27/32

11 31/1

Need of a microscopic level description

Time

Inta 7 28/32

Inda 79/32

Part number

30/32

liciΛ

		Questions
<u> </u>		

Quality Computation

Gain and loss formulas: originally for scalars

012345					
01234	12345				
0123	1234	2345			
012	123	234	345		
01	12	23	34	45	
0	1	2	3	4	5

Inría

31/32

IICIV

Adaptation for time-sliced description

- Vector (ex: activity time per process) quality(A) = $\sum_{i \in n}$ quality(A[i])
- Matrix (ex: activity time per state type) quality(A) = $\sum_{i \in n} (\sum_{j \in m} \text{quality}(A[i][j]))$

Best-Cut Partition for a given p

32/32