Damien Dosimont 1 4 Lucas M. Schnorr ^{2 5} Guillaume Huard 3 4 Jean-Marc Vincent 3 4

1 INRIA

² UFRGS

³ UJF

⁴ firstname.lastname@imag.fr

⁵schnorr@inf.ufras.br

SONGS T+24 plenary meeting, January 27, 2014

Current visualization techniques bring information about system behavior

Global Analysis

Correlations

Workload

Causality relations

Run behavior

Communications

Introduction

Time and space (resources) analysis scalability?

Ex: Gantt Chart is the most common technique employed by analysts...

Figure 1: KPTrace dezoom: example of time axis scalability issues

Figure 2: Example of space limitations: Pajé trace with 700 producers

... but it does not scale to voluminous traces

Our proposal: Ocelotl

Fit to Schneiderman's methodology...

Overview first, zoom and filter, then details on demand

... by providing a macroscopic description of the trace...

... build upon an algorithm proposed by Lamarche-Perrin

- Adapted to timestamped events using time slicing
- Extended to multiple event sources

Our proposal: Ocelotl

Find a perturbation by using several level of details

Figure 3: G-Streamer application perturbed execution: a) full aggregation, b) initialization and termination shown, c) perturbation detected

Figure 4: Information (red) and complexity (green) provided by aggregations

oduction Our proposal: OcelotI Results Spatio-Temporal Aggregation Conclusion Questions

Add semantic to understand general behavior

Figure 5: NAS Benchmark CG.A.64

Compare several executions

Figure 6: NAS Benchmark LU.A.32

oduction Our proposal: OcelotI Results Spatio-Temporal Aggregation Conclusion Questions

OO OO OO OO OOOOOOOOOOO

Some numbers...

G-Streamer case: 30 s

- Almost 1500 different functions, 4 threads
- One million of events
- **100 MB** trace (Pajé format)
- 15 seconds to query events and pre-treatment
- Interaction is then instantaneous

Main limitations

- < 10000 resources.</p>
- < 4 GB to keep reasonable event query delay</p>
- Efficient to decompose trace behavior in time, but unable to relate it with resources

Background: macroscopic description of a system over its structure

Lamarche-Perrin and Schnorr works

- Aggregate preferentially nodes that have close values
- Parametrized by the user to find a good compromise

Figure 7: Triva treemap view example, showing influence of parameter p on node aggregation

Extension of these works

Spatial AND temporal simultaneous aggregation

Figure 8: Synthetic example of spatio-temporal aggregation where space is a hierarchy and time cut into time slices

duction Our proposal: Ocelotl Results Spatio-Temporal Aggregation Conclusion Questions

Conclusion

Tools and FrameSoC Framework

- Official release in June
- Compatible with Pajé trace files, and thus OTF/Tau by using Schnorr's converters

Find use cases and analyze MPI states

- Applications that are not easy to analyze with traditional tools because of resource size
- Qualitative comparison of different executions (ex: simulation vs real application)
- Evaluate complex application/system both space and time behavior.

Links

My website

http://moais.imag.fr/membres/damien.dosimont/

Tools and libraries are available on my github

http://github.com/dosimont

Merci pour votre attention!

Implementation

Interface Overview

Interface Overview

Lamarche-Perrin Works: Multi-Agent Systems

How to Build a Meaningful Macroscopic Description?

Example: Geomedia Project

Example: Viva

Represent Hierarchical Structure according to Value Heterogeneity

Information Loss

Information Loss

Information Loss Measure

Kullback-Leibler Divergence

$$loss(A||e) = \sum_{e \in A} v(e) \times log_2\left(\frac{v(e)}{v(A)}\right)$$
 in bits/x

Quantity of information than one loses by using an aggregated description instead of the microscopic description

Complexity Reduction

Complexity Reduction Measure

Shannon Entropy

$$H(v) = \sum (v(i) \times \log_2 v(i))$$
 in bits/x

Entropy Reduction

$$gain(A||e) = H(A) - H(e)$$
 in bits/x

Quantity of information than one saves by encoding the aggregated description instead of the microscopic description

Compromise Finding between Information Loss and Complexity Reduction

Parametrized Information Criterion

$$pIC(A) = p \times gain(A) - (1 - p) \times loss(A)$$

Temporal Aggregation

Temporal Aggregation principle

■ Same principle but only consecutive data can be aggregated

Ex: Tunisia citation

Need of a microscopic level description

Questions

Microscopic Level: Time-Slicing

Microscopic Level: Producer Activity Time Matrix

Questions

Microscopic Level: State Activity Time Cubic Matrix

Quality Computation

Gain and loss formulas: originally for scalars

012345					
01234	12345				
0123	1234	2345			
012	123	234	345		
01	12	23	34	45	
0	1	2	3	4	5

Adaptation for time-sliced description

- Vector (ex: activity time per process) quality(A) = $\sum_{i \in n}$ quality(A[i])
- Matrix (ex: activity time per state type) quality(A) = $\sum_{i \in n} (\sum_{j \in m} \text{quality}(A[i][j]))$

Best-Cut Partition for a given p

